10 самых знаменитых атомных подлодок в мире. почти все российские

Принцип действия субмарины

Система погружения и всплытия подводной лодки включает в себя балластные и вспомогательные цистерны, а также соединительные трубопроводы и арматуру. Основной элемент здесь – это цистерны главного балласта, за счет заполнения водой которых погашается основной запас плавучести ПЛ. Все цистерны входят в носовую, кормовую и среднюю группы. Их можно заполнять и продувать по очереди или одновременно.

У подлодки есть дифферентные цистерны, необходимые для компенсации продольного смещения грузов. Балласт между дифферентными цистернами передувается при помощи сжатого воздуха или же перекачивается с помощью специальных помп. Дифферентовка – именно так называется прием, целью которого является «уравновешивание» погруженной ПЛ.

Атомные подлодки делят на поколения. Для первого (50-е) характерна относительно высокая шумность и несовершенство гидроакустических систем. Второе поколение строили в 60-е – 70-е годы: форма корпуса была оптимизирована, чтобы увеличить скорость. Лодки третьего больше, на них также появилось оборудование для радиоэлектронной борьбы. Для АПЛ четвертого поколения характерны беспрецедентно малый уровень шума и продвинутая электроника. Облик лодок пятого поколения прорабатывается в наши дни.

Важный компонент любой субмарины – воздушная система. Погружение, всплытие, удаление отходов – все это делается при помощи сжатого воздуха. Последний хранят под высоким давлением на борту ПЛ: так он занимает меньше места и позволяет аккумулировать больше энергии. Воздух высокого давления находится в специальных баллонах: как правило, за его количеством следит старший механик. Пополняются запасы сжатого воздуха при всплытии. Это долгая и трудоемкая процедура, требующая особого внимания. Чтобы экипажу лодки было чем дышать, на борту субмарины размещены установки регенерации воздуха, позволяющие получать кислород из забортной воды.

Самые маленькие подлодки

Поэтому помимо больших гигантов популярностью пользуются и маленькие подводные лодки, их чаще всего используют при высадке диверсионных групп, или же для сбора разведданных. Во Вторую Мировую Германия использовала очень маленькие подводки, тип которых обозначался, как «Бибер», вооружались они не внушительно, две торпеды, или же мины. Вмещала она в себя только одного человека, который ей и управлял. Скорость под одой она развивала до 5,3 узлов, погружалась только до 20 метров. С длинной 9,04 метра и 1,57 метров она плавала в прибрежных водах, планировалось данной лодкой уничтожать противников, но на деле это удалось лишь одной подлодке.

Подлодка Бибер

На данный сегмент подлодок обратили внимание и американцы, но в отличии от немцев они выделяли лишь небольшое количество бюджета на создание этого сегмента флота. Так образец Х-1 был лишь в единственном экземпляре, на нём даже не было установлено вооружения, не считая личное оружие солдат

Вмещала она 5 человек вместе с одним командиром и была около 15 метров в длину и 2 в ширину. Впоследствии Х-1 списали и поместили в музей.

Также небольшой просчет ждал подводку «Велман». Она, как и немецкая помещала в себя одного человека. В 1943 году при проведении испытаний конструкторы заметили свой самый главный просчет, они не добавили перископ на судно, что стало большой проблемой.

На данный момент набирает обороты развитие подводного флота, если раньше имело больший вес, какая удельная мощь твоей армии, то сейчас больше шансов на победу у более хитрого и тихого оппонента, который выиграет битву ещё до её начала. Подводные лодки и являются подобным инструментом шпионажа и подрыва стратегически важных объектов противника. На данный момент поставлены многие рекорды в этой ветке вооруженных сил мира. Но каждая страна стремится сделать арсенал своей техники лучше, чем у конкурирующих государств, поэтому стоит ожидать всё новых и новых видов техники в подводных войсках. После холодной войны многие считали, что гонка вооружений полностью установлена, но пока в газетах и телевизионных сводках новостей мы видим представление нового вида оружия от одной из стран, то можно быть уверенными, что гонка идёт, пускай и не так стремительно, как раньше. Очень стремительно развиваются Россия и США, но не стоит пренебрегать такими странами, как Китай, Северная Корея, Индия. Так Пакистан, Иран и Бразилия собрались строить атомные подводные лодки в своих странах, поэтому новые свершения и вершины в подводных плаваниях не заставят себя долго ждать.

Подводные базы глубоководных аппаратов

О ряде подводных лодок СССР и России известно не больше, чем о «Лошарике», впервые сфотографированном совершенно случайно спустя 27 лет после закладки: это переделанные из серийных АПЛ подводные лодки, предназначенные для несения глубоководных аппаратов.

Таких субмарин известно немного:

  • проект 09774 КС-411 «Оренбург», в прошлом лодка проекта 667А «Навага»
  • проект 09786 БС-136 «Оренбург», переделанная из 667БДР «Кальмар»
  • проект 1910/19100 «Кашалот» из субмарины проекта 675
  • проект 09787 БС-64 «Подмосковье», построенная как АПЛ проекта 667БДРМ «Дельфин»

Все они лишены вооружения и дополнены секретным оборудованием, назначение которого не определено даже военными специалистами.

Вероятно, БС-136 и БС-64 является основным носителем «Лошарика» и его грядущей беспилотной смены «Клавесин-2Р-ПМ», а КС-411 «Оренбург» — беспилотника проекта 18511 «Палтус».

Но свои тайны самые засекреченные суда хранят надежно.

Британская M2 и французский «Сюркуф»

Одна из самых любопытных страниц британского подводного флота связана с субмариной HMS M2, которую построили в 1919-м. В 1927 году ее переоборудовали в первый подводный авианосец в мире.

Лодка потерпела кораблекрушение в британском заливе Лайм в 1932 году. M2 оставила свою базу в Портленде 26 января 1932 года и направилась в сторону Вест-Бэя для проведения учений. 

М2 нашли 3 февраля. Дальнейшее обследование показало, что дверь ангара была открытой и самолет все еще находился там. Вероятно, вода попала через открытую дверь. Не исключено, что моряки пытались запустить самолет в рекордное время.

Еще более загадочной оказалась гибель французского подводного авианосца. Субмарину спустили на воду 18 октября 1929 года и ввели в состав флота в мае 1934-го. Она несла легкий разведывательный гидросамолет Besson MB.411, предназначенный для разведки и корректировки артиллерийского огня.

Дело в том, что уникальная субмарина получила два гигантских 203-миллиметровых орудия в спаренной установке – ее считали «артиллерийской подводной лодкой». Служба лодки оказалась непростой из-за огромного количества поломок. Двенадцатого февраля 1942 года «Сюркуф» вышел в море и взял курс на Панамский канал для перехода в Тихий океан: на лодке исправно работал только один двигатель.

В точку назначения «Сюркуф» не прибыл. Самой вероятной причиной ее гибели потом называли столкновение с американским сухогрузом «Томсон Лайкс» 18 февраля 1942 года. Однако до сих пор место гибели субмарины так и не нашли – и загадка французского подводного «крейсера» все еще не раскрыта.

Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель

Базовый принцип работы атомного реактора

Главный агрегат, отличающий атомную от дизельной лодку — реактор. В зависимости от его типа, может варьироваться тип привода.

В типичном двигателе с ядерным реактором охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора, превращается в пар и вращает лопасти турбины.

Вал турбины подключается к валу электродвигателя через редуктор для более эффективного преобразования энергии в электрическую.

В свою очередь, вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Одновременно с этим часть электроэнергии запасается в бортовых аккумуляторах.

Рабочий отсек АПЛ

Переход энергии молекул пара в кинетическую энергию лопаток приводит к конденсации пара обратно в воду, которая вновь поступает в реактор.

«Странные» лодки Хирохито

Идея «скрестить» надводный корабль-авианосец и подводную лодку, как это ни удивительно, тоже появилась в период Первой мировой. 

Япония одной из первых ухватилась за такую возможность. Если раньше базирующиеся на борту подводной лодки самолеты применяли лишь в целях разведки, то японцы мечтали о бомбардировках далеких и недосягаемых территорий. Так родилась идея снабдить «подводный» самолет парой бомб. Страна восходящего солнца даже испытала концепцию на практике. 

Первую субмарину с возможностью перевозки самолетов японцы построили уже к 1932 году. Подводная лодка I-5 проекта J-1M получила герметичный ангар, где мог помещаться маленький гидроплан. Обеспечить герметизацию щелей в большом люке ангара оказалось сложной инженерной задачей. Кран, который цеплял самолет, часто отказывал в условиях соленой морской воды. Самолет просто спускали на воду при помощи крана, а потом точно так же подбирали.

В 1935 году японский флот получил лодку – I-6 проекта J-2. Ангар увеличенного объема позволил разместить там гидросамолет Watanabe E9W. Он представлял собой биплан с двумя поплавками, оснащенный двигателем Hitachi Tempu II мощностью в 300 лошадиных сил, который вращал двухлопастный деревянный винт постоянного шага.

Самолет можно было легко собирать и разбирать прямо на палубе подводной лодки, что стало несомненным плюсом. 

Были слишком очевидны и недостатки лодок I-5 и I-6. Подготовка к старту и сам запуск требовали много времени и сил, что в условиях войны было чревато потоплением субмарины.

Так появился более удачный проект подводного авианосца J-3. Ангар субмарины вмещал уже два самолета, а для их взлета использовали катапульту и трамплин. 

Лодку I-7 спустили на воду в 1939 году, а немного позже достроили I-8. Незадолго до атаки на Перл-Харбор японский Военно-морской флот пополнила еще одна похожая субмарина – I-9 проекта A1, который включал в себя всего три подводные лодки, каждая из которых несла один гидросамолет.

Полученный японцами опыт позволил создать и первый по-настоящему массовый подводный авианосец в истории. Летом 1942 года японцы спустили на воду лодку I-15 проекта B1.

Важной отличительной особенностью более поздних японских лодок был возросший воздушный потенциал. 

В сентябре 1942 года самолет Yokosuka E14Y, доставленный лодкой I-25 типа B1, совершил налет на территорию штата Орегон, сбросив две 76-килограммовые зажигательные бомбы.

Предполагалось, что они спровоцируют пожары в лесных массивах с последующим ущербом для экономики. Но этого не случилось.

Зато субмарина I-25 вошла в историю: рейд Yokosuka E14Y стал единственным случаем бомбардировки континентальной части США с самолета за всю Вторую мировую.

Практически полное отсутствие у Японии тяжелых бомбардировщиков лишало страну возможности ковровых бомбардировок США, так что воздушные авианосцы стали единственной отдушиной. 

Настоящей же мини-революцией были японские субмарины типа I-400, первые из которых завершили в 1944-1945-х. Главное – в том, что каждая такая субмарина имела серьезную авиагруппу, включавшую до четырех бомбардировщиков Aichi M6A Seiran. В походном состоянии самолеты хранили в ангаре, который находился в рубке. Все оперение гидросамолетов складывалось так, чтобы не выходить за радиус воздушного винта. Для их запуска на лодках применяли стартовую катапульту и стартовые рельсы.

Несмотря на свои недоставки, бомбардировщики Aichi M6A Seiran появись они неожиданно, могли пустить на дно американский эсминец или фрегат, нанести серьезный урон крейсеру или авианосцу. 

В целом масштабы войны на Тихом океане были таковы, что подводные авианосцы не могли принести победу Стране восходящего солнца. Даже если бы их построили значительно большей серией. Максимум, на что можно было рассчитывать, — удачное проведение воздушной разведки.

Как создавалась самая большая подводная лодка

Созданием лодки проекта 941 руководил выдающийся советский конструктор Сергей Никитович Ковалев. Он был неоднократно отмечен государственными наградами и бессменно на протяжении нескольких десятилетий руководил ленинградским ЦКБМТ ”Рубин”. Коллективу этого бюро и была поручена работа над царь-лодкой. Строительство осуществлялось на северодвинском предприятии ”Севмаш”.

Вот она гордость советского и российского атомного флота.

Второе название лодки — ”Акула” — появилось после того, как генсек ЦК КПСС Леонид Ильич Брежнев именно под таким названием представил лодку делегатам съезда партии и остальному миру в 1981 году. В целом, можно сказать, что оба названия неплохо отражают суть такой лодки. Она как тайфун должна сносить все на своем пути и как акула являться самым опасным ”хищником” в океане.

Типы корпусов

Подводные лодки, где корпус выполняет две эти задачи, называли однокорпусными. Цистерна главного балласта находилась внутри корпуса, что снижало полезный объем внутри и требовало максимальной прочности стенок. 

Подводные лодки с полуторным корпусом оснащены прочным корпусом, который частично закрыт более легким. Цистерну главного балласта здесь вынесли наружу. 

Классические двухкорпусные лодки оснащаются прочным корпусом, который на всей своей протяженности закрыт легким корпусом. Главный балласт находится в промежутке между корпусами. 

Современные лодки имеют значительно большую автономность и скорость хода, поэтому инженерам приходится снижать его – корпус делают в форме капли. Это оптимальная форма для движения под водой.

Самые опасные подводные лодки в мире

Также среди АПЛ встречаются самые опасные обитатели морей. Среди самых жутких хищников можно выделить 4.

  1. Пожалуй, самая не приятная встреча в открытом море может быть с подлодкой «Ясень», равных в сражении в открытом море ей нет. Глубина её погружения 600 метров, а в её вооружении присутствуют: 10 отсеков для торпед и 8 ракетных отделений в которых ждут своего часа 32 крылатые ракеты. Их мощность воочию можно было наблюдать, когда в 2014 году, находясь на расстоянии 3000 километров «Ясень» нанес удар по террористическим группировкам в Сирии. Среди недостатков не значится даже высокий шум при передвижении, если необходимо бесшумное нападение, то у подлодки есть электродвигатели малого хода.
  2. Подводная лодка «Борей» не только является одной из самых мощных, но также это самая бесшумная подлодка в мире. Вооружена она ракетами огромной дальности, цель может быть взята за 8000 километров, а сбить их практически невозможно, так как свой курс они могут менять до 10 раз. Погружение подлодки составляет 480 метров, а при помощи реактора на автономном ходу подлодка может продержаться 3 месяца.
  3. США также не остается в стороне и свои подлодки «Вирджиния» Америка считает одними из самых мощных, по крайней мере внутри своего подводного флота этого звания у неё не отнять. Их запас хода и автономность плавания не ограничены, препятствием может встать лишь голод команды, которая насчитывает на подлодке 120 человек. «Вирджиния» пришла на смену «Сивулф», который мог погружаться на глубину 600 метров. Очень часто многие люди сравнивают эту АПЛ и «Ясень», но если российский аппарат предназначен больше для открытого боя, то «Вирджиния» принесёт больше пользы при собирании разведданных. На место стандартного перископа установлены выдвижные мачты с камерами, которые поддерживают отличное разрешение. Также подлодка набирает скорость до 46 километров в час, а под водой и вовсе 65. Данных атомных подлодок немного, семь, но на данный момент вооруженные силы штатов активно внедряют данные корабли.
  4. Другие страны помимо России и США несколько отстают в развитии подводного флота, но также имеют свои убедительные аргументы под водой. Так у Великобритании был построен «Астьют», что в переводе означает «Проницательный», такой экземпляр лишь один и он уступает своим собратьям из России и Америки, но тем не менее на островном государстве он считается лучшим и вооружен он 38 ракетами «Томагавк», а его атомные и водометные двигатели обеспечивают автономность плавания до 90 дней (трех месяцев). Его скорость под водой составляет 54 км/час, а экипаж численностью 98 человек может погружаться под воду на глубину 300 метров.

Опасности фридайвинга

Погружение на большие глубины без акваланга имеет свою специфику. Длится оно обычно не более 7-10 минут (12 минут — максимальное зарегистрированное время задержки дыхания). Тем не менее этого оказывается достаточно, чтобы кровь успела насытиться избыточным азотом: огромное давление на глубине сжимает грудную клетку, так что объём лёгких уменьшается в несколько раз, а плотность воздуха, набранного в них при вдохе перед погружением, пропорционально возрастает.

В среднем объём человеческих лёгких составляет от 4 до 6 литров. Лёгкие «крупногабаритного» натренированного ныряльщика могут вмещать до 10 литров воздуха.

Возьмём «компромиссный» вариант — 7,5 литра. При погружении без акваланга на 40 метров их объём уменьшится до полутора литров, а плотность воздуха в них возрастёт в 5 раз. На глубине 120 метров их объём составит менее 600 миллилитров, а давление воздуха в них возрастёт до 12,5 атмосфер.

Таким образом, азотный наркоз и отчасти декомпрессионная болезнь угрожают не только аквалангистам, но и ныряющим на задержке дыхания фридайверам (пусть и в существенно меньшей степени, поскольку воздух в их лёгких не пополняется на протяжении всего погружения).

Однако сверх этого людей, занимающихся фридайвингом, поджидают дополнительные опасности:

Обжатие грудной клетки

1. Обжатие грудной клетки. При погружении на большие глубины объём лёгких под давлением воды может уменьшиться настолько, что фридайвер будет тяжело травмирован — вплоть до летального исхода.

В медицинских источниках усреднённый теоретический предел погружения без акваланга указывается равным 30-50 метрам. Индивидуальный теоретический предел погружения рассчитывается исходя из объёма лёгких и, как правило, при самых благоприятных показателях не превышает 120 метров.

Естественно, торжествующая практика порой разгромно побивает занудную теорию. Но людей, побивших теорию, чьи имена на слуху у всех фридайверов, — единицы. А вот  безвестных ныряльщиков, которые своей смертью подтвердили надёжность теории, — многие и многие сотни. Так что подумайте, нужно ли именно вам идти на рекорд

Гипоксия

2. Следующая опасность — гипоксия (кислородная недостаточность), вызывающая потерю сознания, что под водой, мягко говоря, нежелательно. Не буду вдаваться здесь в описание физиологических особенностей этого явления, тем более что существует несколько вариантов развития гипоксии при фридайвинге.

Напомню лишь, что объём лёгких невелик и, даже имея специальную подготовку, при глубоководном погружении очень легко просчитаться и уйти «в минус» по кислороду.

Обжим маски и барторавмы

3. Еще одна опасность — обжим маски, а также баротравма среднего уха и гайморовых полостей. Более редкий и экзотический случай — баротоавма зуба (если в результате некачественного пломбирования в нём остался пузырёк воздуха).

Во всех этих случаях причина травмы — разница между давлением в воздушных полостях тела (либо полостях, прилегающих к телу, как подмасочное пространство) и давлением воды снаружи. При отсутствии лор-заболеваний в активной фазе всё это (кроме баротравмы зуба, от которой нет «противоядий», кроме повторного пломбированмя) легко предотвратить продувкой ушей и носа. Но при быстром погружении можно зазеваться и не успеть вовремя выровнять давление.

Вооруженные до зубов лодки типа «Огайо»

Самая тяжеловооруженная субмарина в мире несет 24 баллистических ракетоносителя типа «Трайдент-2». Даже у «Акул» меньше, ведь они несут носители, аналогичные наземным. У «Огайо» они компактные, для подводных лодок.

Вместо них несколько лодок этого класса получили боезапас в 154 крылатые ракеты «Томагавк», которых хватит на целую локальную войну. Впрочем, боеголовок ракет одного «Огайо» хватило бы, чтобы стереть начисто небольшую страну.

Удивительно, но эта махина звучит «всего» на 102 дБ, то есть чуть громче раскатов грома. Для подводного судна это сущие пустяки, которые едва ли распознаваемы при максимальном погружении «Огайо» на 550 метров.

Создаваемая одновременно с «Акулой», «Огайо» оказалась намного перспективнее, дешевле и многофункциональнее. Судя по всему, это единственный подводный ракетоносец, умеющий и ракеты, и торпеды, и боевых пловцов, и глубоководные аппараты запускать.

Ходят упорные слухи, что одна или две лодки этого типа переоборудованы в подводные транспорты для перевозки грузов особо важного назначения. Которые обычным войскам и погранслужбам никогда не найти, не распознать

Прочность и водонепроницаемость

От этих важнейших характеристик зависит живучесть ПЛ. Их обеспечивает особая конструкция корпуса субмарины, который в свою очередь может состоять из двух корпусов – прочного и легкого или только из прочного. В первом случае речь идет о российских подводных лодках, во втором – об американских.

Прочный корпус принимает на себя давление воды, для чего ему придается специальная оптимальная форма. Внутри прочного корпуса находятся все основные системы и устройства подводной лодки. Для создания прочных корпусов используются в основном высокопрочные легированные стали и титановые сплавы. Толщина обшивки прочного корпуса при диаметре 8-12 м может составлять от 40 до 60 мм и более.

Отсеки АПЛ

Легкий корпус обеспечивает оптимальное обтекание во время плавания. Для обеспечения радиолокационной невидимости его «одевают» в специальное противорадиолокационное, звукоизолирующее резиновое покрытие. Внутри легкого корпуса размещаются балластные и топливные (для ДЭПЛ) цистерны, рулевые тяги и гидроакустические антенны.

В подводном положении межкорпусное пространство заполняется водой. Так-как давление на легкий корпус снаружи и изнутри уравновешено, нет необходимости делать его прочным. Толщина обшивки легкого корпуса составляет, как правило, от 8 до 16 мм.

Разделение на отсеки обеспечивают подводной лодке дополнительную живучесть. Отсеки отделены друг от друга водонепроницаемыми дверями-переборками с быстродействующими запирающими устройствами.

Ракетный отсек АПЛ Юрий Долгорукий

Примерный перечень отсеков ДЭПЛ: носовой и кормовой торпедные отсеки; отсек главных гребных электродвигателей и электростанция; машинный отсек; жилые помещения команды; центральный пост.

Максимальная глубина погружения подлодки

Если долго изучать подводные лодки, то можно заметить то, что максимальная глубина погружения подводной лодки в мире – 1027 метров. Данный рекорд поставило судно К-278 «Комсомолец». Заложили подлодку в 1966 году по проекту главного конструктора Н.А. Климов, а в 1977 году его дело продолжил Ю.Н. Кормилицин. А.Я. Томчин был главным наблюдающим, капитаном второго ранга военно-морского флота, затем Н.В. Шалонов заменил его на этом посту. Проект был завершен в день Победы 9 мая 1983 года, именно тогда «Комсомольца» спустили на воду.

Его отличии от многих других похожих суден было в том, что его корпус был сделан из титана, что позволило облегчить корабль на 35%. Его рабочая глубина значилась, как 1000 метров, а автономное плавание 180 суток. Размер экипажа был относительно небольшим, 60 человек, 31 из которых офицер. На воде водоизмещение составило – 5880, а под ней – 8500 тонн. Длина и ширина – 110 и 12,3 метра. На данный момент К-278 находится в Норвежском море, а точнее на его дне, 7 апреля 1989 года она трагично затонула из-за случившего пожара на борту, спасти удалось только 30 моряков, а остальные 16 погибли до приезда спасателей.

К-278 «Комсомолец»

Так как подлодка была атомной, то существовал риск заражения окружающей среды. Поначалу хотели поднять судно целиком, но затем ограничились лишь ящиков с радиоактивными веществами. В первой экспедиции группа моряков подняла все отходы на 200 метров, но затем трос оборвался и пришлось вернуться на сушу, следующая экспедиция была предпринята в 1998 году, но прибывшие на место трагедии лишь ограничились исследование радиационного фона, не став поднимать ящики, заверив, что окружающей среде ничего не угрожает.

Максимальная глубина погружения человека

Если мы говорим о максимальном погружении подлодки, то следует разобраться, почему же подводная лодка не может спуститься на самую глубокую точку нашей планеты, в Марианскую впадину, как известно толща воды давит на объекты давление, поэтому, когда обозначается предельная глубина судна, то имеется виду на какое расстояние подводка может уйти в воду без негативных последствий для команды и себя самой. Максимальная глубина одна из главнейших тактических качеств субмарин, чем она ниже, тем больше шансов быть незамеченным для противников, а также тем ниже могут создаваться звуковые колебания в воде, которые засекаются сонаром. Сонар работает по принципу поиска объектов на глубине, в том числе его применяют и для поиска подводных лодок, но чем меньше подлодка создает колебаний, тем труднее её обнаружить, по этой причине, сонары улучшаются и совершенствуются, увеличивая свою чувствительность.

Параметры глубины

Экипаж подводной лодки может подвергнуться серьёзным физиологическим проблемам, если давление воздуха внутри будет равняться давлению воды снаружи корпуса: при высоком давлении кислород станет токсичным и опасным. Поэтому если внутри поддерживается нормальное атмосферное давление, корпус должен выдерживать любую силу давления, создаваемую толщей воды — много большую, чем атмосферное давление — и избегать возникновения остаточных деформацией. Давление воды снаружи возрастает с глубиной, а следовательно, вероятность возникновения деформаций также возрастает. На каждые 10 метров погружения давление возрастает на одну атмосферу (100 кПа), отсюда давление будет составлять 30 атмосфер (3 МПа) на глубине 300 метров.

Проектная глубина

Проектная глубина (англ. design depth в зарубежных источниках) — номинальная глубина, указываемая в требованиях к подводной лодке. На её основе конструкторское бюро рассчитывает толщину металлического корпуса, водоизмещение субмарины и прочие параметры. Поскольку конструкторы в свои расчёты включают предел погрешности, предельная глубина должна быть чуть-чуть больше проектной глубины.

Испытательная глубина

Испытательная глубина погружения (англ. test depth в зарубежных источниках) — глубина, на которой подводная лодка может плавать в обычных мирных условиях. Она определяется на ходовых испытаниях подводной лодки. Согласно требованиям ВМС США, эта глубина должна составлять две трети от проектной глубины, согласно требованиям ВМС Великобритании — 4/7 от проектной глубины, согласно требованиям ВМС Германии — ровно половину от проектной глубины.

Рабочая глубина

Рабочая глубина или Максимальная оперативная глубина (англ. maximum operating depth в официальных зарубежных источниках или англ. never-exceed depth, буквально «глубина, никогда не превышаемая») — максимальная глубина, на которой подводная лодка может находиться неограниченно долго в любых условиях (в том числе и боевых) без возникновения остаточных деформаций.

Предельная глубина

Предельная глубина (англ. crush depth), также известная как тестовая глубина (не путать с испытательной глубиной) или глубина разрушения (англ. collapse depth) — максимально возможная для подводной лодки глубина, до которой та ещё может погрузиться без разрушения, но с остаточными деформациями. При превышении этого предела лодку буквально раздавит давлением. Предельная глубина вычисляется конструкторами, но не всегда является точной. В официальных отчётах Второй мировой войны нередко сообщалось, что подлодки при достижении «предельной глубины» вынуждены были откачивать воду и затем успешно всплывали: предполагается, что авторы отчётов могли перепутать предельную глубину с испытательной. Для подводных лодок кригсмарине предельная глубина составляла 200—280 м. Для американских подводных лодок испытательная глубина составляла 490 м, а предельная глубина — около 730 м.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий